Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37512607

RESUMEN

This paper proposes a FMCW radar transceiver with photonic elements. The proposed radar system is efficiently designed by budget analysis, and a wideband signal is generated using photonic elements. To verify the performance of the proposed radar system, field tests including changes in bandwidth are conducted. The results confirm that the resolution of ISAR images improves as the bandwidth increases as expected through the budget analysis.

2.
Plant Cell ; 34(2): 910-926, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893905

RESUMEN

Photosynthetic organisms are exposed to various environmental sources of oxidative stress. Land plants have diverse mechanisms to withstand oxidative stress, but how microalgae do so remains unclear. Here, we characterized the Chlamydomonas reinhardtii basic leucine zipper (bZIP) transcription factor BLZ8, which is highly induced by oxidative stress. Oxidative stress tolerance increased with increasing BLZ8 expression levels. BLZ8 regulated the expression of genes likely involved in the carbon-concentrating mechanism (CCM): HIGH-LIGHT ACTIVATED 3 (HLA3), CARBONIC ANHYDRASE 7 (CAH7), and CARBONIC ANHYDRASE 8 (CAH8). BLZ8 expression increased the photosynthetic affinity for inorganic carbon under alkaline stress conditions, suggesting that BLZ8 induces the CCM. BLZ8 expression also increased the photosynthetic linear electron transfer rate, reducing the excitation pressure of the photosynthetic electron transport chain and in turn suppressing reactive oxygen species (ROS) production under oxidative stress conditions. A carbonic anhydrase inhibitor, ethoxzolamide, abolished the enhanced tolerance to alkaline stress conferred by BLZ8 overexpression. BLZ8 directly regulated the expression of the three target genes and required bZIP2 as a dimerization partner in activating CAH8 and HLA3. Our results suggest that a CCM-mediated increase in the CO2 supply for photosynthesis is critical to minimize oxidative damage in microalgae, since slow gas diffusion in aqueous environments limits CO2 availability for photosynthesis, which can trigger ROS formation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/fisiología , Estrés Oxidativo/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Anhidrasas Carbónicas/metabolismo , Chlamydomonas reinhardtii/citología , Regulación de la Expresión Génica , Peroxidación de Lípido , Estrés Oxidativo/genética , Complejo de Proteína del Fotosistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Front Plant Sci ; 12: 665842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936156

RESUMEN

An increase in environmental pollution resulting from toxic heavy metals and metalloids [e.g., cadmium (Cd), arsenic (As), and lead (Pb)] causes serious health risks to humans and animals. Mitigation strategies need to be developed to reduce the accumulation of the toxic elements in plant-derived foods. Natural and genetically-engineered plants with hyper-tolerant and hyper-accumulating capacity of toxic minerals are valuable for phytoremediation. However, the molecular mechanisms of detoxification and accumulation in plants have only been demonstrated in very few plant species such as Arabidopsis and rice. Here, we review the physiological and molecular aspects of jasmonic acid and the jasmonate derivatives (JAs) in response to toxic heavy metals and metalloids. Jasmonates have been identified in, limiting the accumulation and enhancing the tolerance to the toxic elements, by coordinating the ion transport system, the activity of antioxidant enzymes, and the chelating capacity in plants. We also propose the potential involvement of Ca2+ signaling in the stress-induced production of jasmonates. Comparative transcriptomics analyses using the public datasets reveal the key gene families involved in the JA-responsive routes. Furthermore, we show that JAs may function as a fundamental phytohormone that protects plants from heavy metals and metalloids as demonstrated by the evolutionary conservation and diversity of these gene families in a large number of species of the major green plant lineages. Using ATP-Binding Cassette G (ABCG) transporter subfamily of six representative green plant species, we propose that JA transporters in Subgroup 4 of ABCGs may also have roles in heavy metal detoxification. Our paper may provide guidance toward the selection and development of suitable plant and crop species that are tolerant to toxic heavy metals and metalloids.

4.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33661765

RESUMEN

ORM1-like 3 (ORMDL3) has strong genetic linkage to childhood onset asthma. To determine whether ORMDL3 selective expression in airway smooth muscle (ASM) influences ASM function, we used Cre-loxP techniques to generate transgenic mice (hORMDL3Myh11eGFP-cre), which express human ORMDL3 selectively in smooth muscle cells. In vitro studies of ASM cells isolated from the bronchi of hORMDL3Myh11eGFP-cre mice demonstrated that they developed hypertrophy (quantitated by FACS and image analysis), developed hyperplasia (assessed by BrdU incorporation), and expressed increased levels of tropomysin proteins TPM1 and TPM4. siRNA knockdown of TPM1 or TPM4 demonstrated their importance to ORMDL3-mediated ASM proliferation but not hypertrophy. In addition, ASM derived from hORMDL3Myh11eGFP-cre mice had increased contractility to histamine in vitro, which was associated with increased levels of intracellular Ca2+; increased cell surface membrane Orai1 Ca2+ channels, which mediate influx of Ca2+ into the cytoplasm; and increased expression of ASM contractile genes sarco/endoplasmic reticulum Ca2+ ATPase 2b and smooth muscle 22. In vivo studies of hORMDL3Myh11eGFP-cre mice demonstrated that they had a spontaneous increase in ASM and airway hyperreactivity (AHR). ORMDL3 expression in ASM thus induces changes in ASM (hypertrophy, hyperplasia, increased contractility), which may explain the contribution of ORMDL3 to the development of AHR in childhood onset asthma, which is highly linked to ORMDL3 on chromosome 17q12-21.


Asunto(s)
Proteínas de la Membrana/genética , Músculo Liso/patología , Tropomiosina/genética , Animales , Asma/genética , Asma/patología , Hiperreactividad Bronquial/etiología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Histamina/farmacología , Humanos , Hiperplasia , Hipertrofia , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Tropomiosina/metabolismo
5.
Physiol Plant ; 172(3): 1422-1438, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31828796

RESUMEN

ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oomicetos , Transportador de Casetes de Unión a ATP, Subfamilia G , Análisis por Conglomerados , Interacciones Huésped-Patógeno , Filogenia , Enfermedades de las Plantas/genética
6.
Proc Natl Acad Sci U S A ; 117(37): 23131-23139, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868427

RESUMEN

Lipid droplets (LDs) are intracellular organelles found in a wide range of organisms and play important roles in stress tolerance. During nitrogen (N) starvation, Chlamydomonas reinhardtii stores large amounts of triacylglycerols (TAGs) inside LDs. When N is resupplied, the LDs disappear and the TAGs are degraded, presumably providing carbon and energy for regrowth. The mechanism by which cells degrade LDs is poorly understood. Here, we isolated a mutant (dth1-1, Delayed in TAG Hydrolysis 1) in which TAG degradation during recovery from N starvation was compromised. Consequently, the dth1-1 mutant grew poorly compared to its parental line during N recovery. Two additional independent loss-of-function mutants (dth1-2 and dth1-3) also exhibited delayed TAG remobilization. DTH1 transcript levels increased sevenfold upon N resupply, and DTH1 protein was localized to LDs. DTH1 contains a putative lipid-binding domain (DTH1LBD) with alpha helices predicted to be structurally similar to those in apolipoproteins E and A-I. Recombinant DTH1LBD bound specifically to phosphatidylethanolamine (PE), a major phospholipid coating the LD surface. Overexpression of DTH1LBD in Chlamydomonas phenocopied the dth1 mutant's defective TAG degradation, suggesting that the function of DTH1 depends on its ability to bind PE. Together, our results demonstrate that the lipid-binding DTH1 plays an essential role in LD degradation and provide insight into the molecular mechanism of protein anchorage to LDs at the LD surface in photosynthetic cells.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Gotas Lipídicas/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Secuencia de Aminoácidos , Metabolismo de los Lípidos/fisiología , Nitrógeno/metabolismo , Fosfolípidos/metabolismo , Fotosíntesis/fisiología , Triglicéridos/metabolismo
7.
Sensors (Basel) ; 20(10)2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32438711

RESUMEN

On modern construction sites, guidance and automation systems are increasingly applied to excavators. Recently, studies have been actively conducted to compare the estimation results of the bucket tip with the motion measurement method of the boom, stick, and bucket and the sensor selection. This study selected the method of measuring the cylinder length of boom, stick, and bucket, and the method of directly measuring the boom, arm, and bucket, which are commonly used in guidance and automation systems. A low-cost sensor that can be attached and detached to the excavator in modular form was selected to apply the above methods to commercial excavator. After the sensor selection, hardware and excavator simulation models for sensor measurements were constructed. Finally, the trajectory of the bucket tip was compared and analyzed through graphs and simulation results when the boom, stick, and bucket were independently rotated one by one, or together. The results gives a guideline on what kinds of sensors would be better in machine guidance or controlling an excavator according to given external environments.

8.
Mol Cells ; 43(1): 48-57, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-31910336

RESUMEN

The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation . Our study provides a potential tool for increasing lipid production in microalgae.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Chlamydomonas reinhardtii/fisiología , Cloroplastos/metabolismo , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Triglicéridos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Microscopía Electrónica de Transmisión , Mutación/genética , Nitrógeno/metabolismo , Filogenia , Alineación de Secuencia
9.
Plant Cell ; 31(5): 1127-1140, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30894460

RESUMEN

Endoplasmic reticulum (ER) stress is caused by the stress-induced accumulation of unfolded proteins in the ER. Here, we identified proteins and lipids that function downstream of the ER stress sensor INOSITOL-REQUIRING ENZYME1 (CrIRE1) that contributes to ER stress tolerance in Chlamydomonas (Chlamydomonas reinhardtii). Treatment with the ER stress inducer tunicamycin resulted in the splicing of a 32-nucleotide fragment of a basic leucine zipper 1 (bZIP1) transcription factor (CrbZIP1) mRNA by CrIRE1 that, in turn, resulted in the loss of the transmembrane domain in CrbZIP1, and the translocation of CrbZIP1 from the ER to the nucleus. Mutants deficient in CrbZIP1 failed to induce the expression of the unfolded protein response genes and grew poorly under ER stress. Levels of diacylglyceryltrimethylhomoserine (DGTS) and pinolenic acid (18:3Δ5,9,12) increased in the parental strains but decreased in the crbzip1 mutants under ER stress. A yeast one-hybrid assay revealed that CrbZIP1 activated the expression of enzymes catalyzing the biosynthesis of DGTS and pinolenic acid. Moreover, two lines harboring independent mutant alleles of Chlamydomonas desaturase (CrDES) failed to synthesize pinolenic acid and were more sensitive to ER stress than were their parental lines. Together, these results indicate that CrbZIP1 is a critical component of the ER stress response mediated by CrIRE1 in Chlamydomonas that acts via lipid remodeling.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Chlamydomonas reinhardtii/genética , Estrés del Retículo Endoplásmico , Metabolismo de los Lípidos , Alelos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/fisiología , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Linolénicos/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN de Planta/genética , Triglicéridos/metabolismo , Tunicamicina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Plant J ; 94(1): 91-104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29385296

RESUMEN

In many eukaryotes, endoplasmic reticulum (ER) stress activates the unfolded protein response (UPR) via the transmembrane endoribonuclease IRE1 to maintain ER homeostasis. The ER stress response in microalgae has not been studied in detail. Here, we identified Chlamydomonas reinhardtii IRE1 (CrIRE1) and characterized two independent knock-down alleles of this gene. CrIRE1 is similar to IRE1s identified in budding yeast, plants, and humans, in terms of conserved domains, but differs in having the tandem zinc-finger domain at the C terminus. CrIRE1 was highly induced under ER stress conditions, and the expression of a chimeric protein consisting of the luminal N-terminal region of CrIRE1 fused to the cytosolic C-terminal region of yeast Ire1p rescued the yeast ∆ire1 mutant. Both allelic ire1 knock-down mutants ire1-1 and ire1-2 were much more sensitive than their parental strain CC-4533 to the ER stress inducers tunicamycin, dithiothreitol and brefeldin A. Treatment with a low concentration of tunicamycin resulted in growth arrest and cytolysis in ire1 mutants, but not in CC-4533 cells. Furthermore, in the mutants, ER stress marker gene expression was reduced, and reactive oxygen species (ROS) marker gene expression was increased. The survival of ire1 mutants treated with tunicamycin improved in the presence of the ROS scavenger glutathione, suggesting that ire1 mutants failed to maintain ROS levels under ER stress. Together, these results indicate that CrIRE1 functions as an important component of the ER stress response in Chlamydomonas, and suggest that the ER stress sensor IRE1 is highly conserved during the evolutionary history.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Estrés del Retículo Endoplásmico , Proteínas de Plantas/metabolismo , Alelos , Chlamydomonas reinhardtii/genética , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Genes de Plantas/fisiología , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
11.
Plant Biotechnol J ; 14(11): 2158-2167, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27133096

RESUMEN

Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C. reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a > 20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C. reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.


Asunto(s)
Aciltransferasas/genética , Chlamydomonas/enzimología , Microalgas/química , Microalgas/genética , Plastidios/enzimología , Microalgas/metabolismo , Aceites de Plantas/metabolismo
12.
Mol Plant ; 9(3): 338-355, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26902186

RESUMEN

Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant's lifestyle, by transporting various compounds across specific membranes of the plant.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Adaptación Fisiológica , Animales , Fenómenos Fisiológicos de las Plantas
13.
Front Microbiol ; 6: 54, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25759683

RESUMEN

Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 µg mL(-1)) for 1 h, Chlamydomonas cells accumulated at least fourfold the amount of triacylglycerols (TAGs) present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over twofold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...